Sample Questions

Sample Question 1. A palindrome is a string that is spelt the same forwards and backwards. The following code tries to check if the given string is a palindrome or not. It does not work properly when the input is given as a mixed-case string.

Java:				
1	<pre>static boolean isPalindrome(String p) {</pre>			
2	<pre>return p.equals(new StringBuilder(p).reverse().toString());</pre>			
3	}			
Python:				
1	<pre>def isPalindrome(p):</pre>			
2	<pre>return (p == p[::-1])</pre>			

How can we fix the code?

- I. convert p to lowercase before line 2
- II. convert p to uppercase before line 2
- III. change condition on line 2 to (p[::-1] == p) [python] or (new StringBuilder(p).reverse().toString()).equals(p); [Java]
 IV. change condition on line 2 to
 - (p != p[::-1]) [python] or !p.equals(new StringBuilder(p).reverse().toString()); [Java]
 - A. Only I
 - B. Only II
 - C. Both I & II
 - D. All options work (I, II, III, IV)
 - E. None of the above.

Correct Answer: C, converting the case to uppercase or lowercase will ensure this works for mixed case strings.

Sample Question 2. What would be considered an efficient way of finding an element in a binary search tree (BST)?

- I. Use a recursive find algorithm that goes down one branch of the BST
- II. Use an iterative find algorithm that goes down one branch of the BST
- III. Use a breadth-first search algorithm
- IV. Use a depth-first search algorithm
 - A. I&II

- B. Only I
- C. Only II
- D. All of 1 & 11 & 111 & 1V
- E. None of the Above

Correct answer A. While all of them can get the answer, but only I and II are efficient. While iteration is most efficient, even recursive tree-walk down a branch is very efficient with log(N) traversals.

Sample Question 3. How many nodes are there in a fully balanced binary tree of depth 3?

- A. 3
- B. 7
- C. 15
- D. An indeterminate number between 0 and 16
- E. None of the above

Correct answer B, i.e. 4+2+1

Sample Question 4. What is the asymptotic O(.) time-complexity of the following code snippet? Assume that the input parameter to the loops function is a 2D-array of integers.

- A. O(n^2)
- B. O(n^3)
- C. O(n*log n)
- D. O(n)
- E. none of the above

Correct answer: A.

Sample Question 5. A pythagorean triplet (a,b,c) of three positive integers has the property that $a^2 + b^2 = c^2$. Which of the following code samples will print the number of pythagorean triplets satisfying the inequality $1 \le a \le b \le c \le 100$

Option	Python	Java
A	<pre>1 # A 2 count = 0 3 for a in range(1,99,1): 4 for b in range(a+1,100,1): 5 for c in range(b+1,101,1): 6 if (a*a+b*b==c*c): 7 count+=1 8 print("Number of triplets is "+str(count)) 7</pre>	<pre>12 public static void optionA() { 13</pre>
В	<pre># B count = 0 for a in range(1,100,1): for b in range(a+1,100,1): for c in range(b+1,100,1): if (a*a+b*b==c*c):</pre>	<pre>public static void optionB() { int count = 0; for (int a=1;a<100;a++) { for (int b=a+1;b<100;b++) { for (int c=b+1;c<100;c++) {</pre>
С	<pre># C count = 0 for a in range(1,101,1): for b in range(1,101,1): for c in range(1,101,1): if (a*a+b*b==c*c):</pre>	<pre>public static void optionC() { int count = 0; for (int a=1;a<101;a++) { for (int b=1;b<101;b++) { for (int c=1;c<101;c++) {</pre>

D	<pre># D import math def is_square(i: int) -> bool: return i == math.isqrt(i) ** 2 count = 0 for a in range(1,101,1): for b in range(a+1,101,1): if is_square(a*a+b*b):</pre>	<pre>public static boolean is_square(int x) { double sq = Math.sqrt(x); return ((sq - Math.floor(sq)) == 0); } public static void optionD() { int count = 0; for (int a=1;a<101;a++) { for (int b=a+1;b<101;b++) { if (is_square(a*a+b*b)) count+=1; } } System.out.println("Number of triplets is "+count); } </pre>
E	None of the above will print the right answer	

Correct answer: A